与几何相关的难题。
而且如果他没记错的话,这个猜想好像还连接着代数领域,是几何与代数相交织的数学难题。
书房中,小灵的声音紧随其后响起。
“收到!主人!”
“努力搜索中,嘿鸭!”
等待了大约三分钟左右的时间,小灵的声音再度在书房中响起。
“主人,已经搜索完毕啦!”
“与几何或代数相关,且带有无限性质的数学猜想,相对知名的共有五个。”
“分别是奥特(Vaught)猜想与拓扑奥特猜想、阿廷(Artin)群的 Gr¨obner-Shirshov基猜想、四维流形上的的11/8猜想、挂谷猜想.”
在小灵快速的报道相关数学猜想名字的时候,书桌上的电脑显示屏也亮了起来,与之相关的数学信息快速的被放映了出来。
对于徐川来说,了解这些猜想并不用这么麻烦。
事实上当小灵报出这几个数学难题的名字时,他就反应了过来他要寻找的数学猜想到底是哪一个。
滑动了一下鼠标,他的目光落在了第四个猜想上。
“挂谷猜想!”
挂谷问题,由小岛国的数学家挂谷宗一于1917年提出的一个数学难题,又称“挂谷转针问题”。
这个问题的数学表述为:长度为1的线段在平面上做刚体移动(转动和平移),转过180度并回到原位置,扫过的最小面积是多少?
简单的来说,在某些图形中,长度为1个单位的线段(一根针)可以转过180°,在这个过程中该线段总是保持在该图形之内,在所有这样图形里,哪种图形具有最小面积?
据说挂谷的灵感来自遭到偷袭的日本武士,其原型是假设一位武士在上厕所时遭到敌人袭击,矢石如雨,而他只有一根短棒,为了挡住射击,需要将短棒旋转一周360°。
但他所在的厕所很小,为了全部防御应当使短棒扫过的面积尽可能小,所以这名武士挥舞木棍时,面积最小可以小到多少?
而挂谷把武士刀抽象成理想的不占空间的长针,同时为了方便,把问题限制在2维平面上。
尽管从名义上来说,这是个趣味性的数学问题,一开始大部分的数学家也不是很重视这个问题。
但伴随着时间的流逝,越来越多的数学家开始研究这个问题的时候,发现它并没有那么的简单。
如果是单纯的
本章未完,请点击下一页继续阅读!